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Numerical simulation of high-Reynolds number flow
around circular cylinders by a three-step FEM–BEM
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SUMMARY

An innovative computational model, developed to simulate high-Reynolds number flow past circular
cylinders in two-dimensional incompressible viscous flows in external flow fields is described in this
paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value
problems by extracting the boundary effects on a specified finite computational domain, using the
projection method. The pressure is assumed to be zero at infinite boundary and the external flow field
is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A
three-step finite element method (FEM) is used to solve the momentum equations of the flow. The
present model is applied to simulate high-Reynolds number flow past a single circular cylinder and flow
past two cylinders in which one acts as a control cylinder. The simulation results are compared with
experimental data and other numerical models and are found to be feasible and satisfactory. Copyright
© 2001 John Wiley & Sons, Ltd.

KEY WORDS: boundary elements; finite elements; incompressible viscous flow; Navier–Stokes equa-
tions; vortex shedding suppression

1. INTRODUCTION

The vortex shedding phenomena from bluff bodies like circular cylinders are commonly
considered as the main source that causes the flow induced vibrations, noises, and even
collapse of a body in an external flow. The study of the vortex shedding over a circular
cylinder and suppression of fluid forces has received much attention, since practical applica-
tions are expected in various areas of engineering such as high-rise buildings analysis, wind
engineering, aeronautics, etc. The major difficulty in simulating the vortex shedding and fluid
force on the bluff bodies in external flow fields lies in setting the boundary conditions of the
computational domain to simulate the external flow that has infinite domain.
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Even though a large number of experimental studies have been reported on laminar vortex
shedding flows (for example, Reference [1]) at low Reynolds number, investigations in
unsteady flow field at high Reynolds number are rather limited due to the difficulties involved
in unsteady flow measurements, with rare exceptions such as the works of Cantwell and Coles
[2] and Sakamato and Haniu [3]. Many methods have been developed to suppress vortex
shedding and to reduce the fluid forces over circular cylinders [4]. Recently, Strykowsky and
Sreenivasan [1] reported that vortex shedding can be suppressed by introducing small diameter
control cylinders at a low Reynolds number flow regime, and Sakamato and Haniu [3]
succeeded in reducing the fluid forces acting on a circular cylinder at comparatively large
Reynolds numbers with the introduction of a control cylinder near the main cylinder. The aim
of the present work is the numerical investigation of the flow around a main cylinder and the
reduction of the fluid forces around the main cylinder by introducing a control cylinder at
various positions, using an innovative numerical scheme.

Numerical simulations of vortex shedding flow past bluff bodies have been performed by
many researchers with the use of the finite volume method (FVM), finite difference method
(FDM), finite element method (FEM) or the boundary element method (BEM). Braza et al. [5]
and Franke et al. [6] used the FVM and analyzed the vortex shedding past circular cylinders
and square cylinders in a laminar flow regime. Using FDM, Lecointe and Piquet [7] calculated
the flow around circular cylinders using the stream function–vorticity approach. A Galerkin
FEM has been used by Jackson [8] to study vortex shedding in flow past variously shaped
bodies by solving steady state equations. FEM and BEM have been widely in use for the
solution of various fluid dynamics problems in the last two decades. For the solution of
different forms of Navier–Stokes equations, the use of FEM [9,10] and BEM [11] has been
described by various researches.

In FEM, it is well known that the conventional Galerkin finite element scheme leads to
spurious oscillatory solutions for fluid dynamics problems at high Reynolds numbers. To
overcome such oscillation and numerical dissipation, various upwind schemes have been
successfully presented by researchers. In the finite element approximation, the upwind schemes
have been developed by the use of schemes based on the Petrov–Galerkin [12–14] or the
Taylor–Galerkin methods [15]. Jiang and Kawahara [16] recently developed a three-step finite
element scheme for the unsteady incompressible viscous flows, based on the Taylor–Galerkin
schemes.

In this paper, a new computational model is presented to solve the high-Reynolds number
flow past bluff bodies in external flow fields. The model, based on transient Navier–Stokes
equations, can solve the infinite boundary value problems by extracting the boundary effects
on a specified finite computational domain, using the projection method [17]. A three-step
FEM is used to solve the momentum equations of the flow. The pressure Poisson equation for
the external flow field is treated by the BEM and then coupled with the three-step FEM
scheme. The feasibility of the developed numerical scheme in the application of high-Reynolds
number flows has been illustrated by applying the model to simulate high-Reynolds number
flow past a single circular cylinder, and flow past two cylinders in which one acts as a control
cylinder. The simulation results are compared with some experimental data and other
numerical models and are found to be feasible and satisfactory.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 657–689



FLOW AROUND CIRCULAR CYLINDERS 659

After presenting the governing equations, the numerical formulation using coupled BEM
and three-step FEM are briefly described. Then the solution procedure and numerical results
for two case studies of high-Reynolds number flow around a single circular cylinder and flow
around two cylinders in which one acts as a control cylinder, are presented and followed by a
few concluding remarks.

2. GOVERNING EQUATIONS

The governing equations of the motion of an incompressible viscous fluid flow can be
expressed by the Navier–Stokes equations and continuity equation and written in Cartesian
tensor notation as follows:
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�xi

=0 (1)

�ui

�t
+

uj �ui

�xj

= −
1
�

�p
�xi

+�
�2ui
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where ui, i=1, 2, are two components of the velocity vector in the x-, y-directions, p is
pressure, � is kinematic viscosity, t is time, � is mass density, fi=�gli are body forces in the
x-, y-directions, g is gravitational acceleration and li are direction cosines in the x- and
y-directions. Using the following dimensionless forms of the variables:

x*=x/D, y*=y/D, u*=u/u0, �*=�/u0, t*= tu0/D, p*=p/�u0
2 (3)

where D is a characteristic length and u0 is a characteristic velocity. Now Equations (1) and (2)
can be written as
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where Re=u0D/� is the Reynolds number and Fr=u0/(gD)1/2 is the Froude number. Drop-
ping the asterisk from the dimensionless variables in the following equations for brevity and
putting the body force terms into the pressure field for neglecting the free surface effects, the
non-dimensionalized governing equations for (1) and (2) can be written as

�ui

�xi

=0 (6)
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Generally used boundary conditions are the prescribed velocities

u=u0, �=�0 (8)

and the non-slip boundary conditions. At the initial time, some known values of velocities and
pressure can be prescribed as initial conditions.

As far as external flows are concerned, the outer boundaries are located at the infinity. In
numerical computations, due to the limitations of computational facilities, it is assumed that
the computational domain is limited to the finite region. In the present analysis we assume that

�2p=0 (9)

is valid out of the finite computational domain. As a consequence, only the inflow boundary
condition is needed as the boundary requirement of the computational domain. A sample
computational domain for the type of problem that will be considered in the present study is
shown in Figure 1 with boundary conditions. The boundary condition of the fixed body in the
flow is set as a no-slip boundary.

Figure 1. Computational domain and boundary conditions for a typical problem.
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3. NUMERICAL FORMULATION

As mentioned earlier, in the present model, a coupled three-step FEM–BEM approach is used
in the solution of the governing differential equations. In this section, the numerical formula-
tion is briefly described.

3.1. Three-step FEM formulation for momentum equations

In the present model, the mass–momentum Navier–Stokes equations are approximated using
an explicit three-step FEM based on a Taylor series expansion in time [16]. From Taylor’s
series, a function h in time can be represented as

h(t+�t)=h(t)+�t
�h(t)

�t
+

�t2

2
�2h(t)

�t2 +
�t3

6
�3h(t)

�t3 +O(�t4) (10)

Approximating Equation (10) up to third-order accuracy, the three-step formulation can be
written as

h
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�t
3

�h(t)
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(12)

h(t+�t)=h(t)+�t
�h(t+�t/2)

�t
(13)

When Equations (11)– (13) are discretized using the standard Galerkin FEM and the resulting
finite element equations are solved using the Jacobian iteration, the three-step FEM is
obtained [16]. This method has all the advantages of the Taylor–Galerkin method and is stable
while solving the convective transport equations.

From the above scheme, using a projection method of the Navier–Stokes equations [17], one
can convert Equation (7) in the following steps:
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Step 3
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where u*i is the apparent velocity. Combining the continuity equation (6) and taking the
gradient of Equation (16), the pressure Poisson equation is derived to correct the velocity
equation as
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1
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��u*i
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�
(17)

Now the present velocity can be derived as
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(18)

Spatial discretization of Equations (14)– (16) are performed by the standard Galerkin method
using four-point bilinear elements [9]. The resulting finite element equations can be expressed
as

For step 1

Mij

u� j
n+1/3−u� j

n

�t/3
= −Aij

nu� j
n−Bb ijp j

n−
1

Re
Siju� j

n+
�

��

Ni

Re
��u� n

�n
�

dS (19)

For step 2

Mij

u� j
n+1/2−u� j

n

�t/2
= −Aij

n+1/3u� j
n+1/3−Bb ijp j

n−
1

Re
Siju� j

n+1/3+
�

��

Ni

Re
��u� n+1/3

�n
�

dS (20)

For step 3
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Equations (18) can be discretized as

Miju� n
n+1=Miju� j*−�tBb ijp j

n+1 (22)

where

Mij=
�

�
NiNj d�
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in which Ni and Nj are the shape functions and arrows stand for the two components
associated with the x- and y-directions.

After assembling the system and applying the boundary conditions, the system of equations
are solved using the Jacobian iterative scheme.

3.2. BEM formulation for pressure Poisson equation

Consider the Poisson type pressure equation in p and u*i , Equation (17)

�2p=
1
�t

��u*i
�xi

�
=b (23)

with pressure boundary conditions as

p̄=p0 on �1, q̄=
�po

�n
on �2 (24)

where n is the unit outward normal vector. In the present model, an iterative scheme is used
such that the velocity u*i is known in the current iteration and time step from the previous step
by solving the Navier–Stokes equations.

A weighting function p* can now be introduced such that it has continuous first derivatives
within the domain. The following weighted residual statement can now be written:

�
�

(�2p−b)p* d�=
�

�2

(q− q̄)p* d�−
�

�1

(p− p̄)q* d� (25)

where q=�p/�n and q*=�p*/�n.
Let p* be the fundamental solution of the Laplace equation in two dimensions, represented

as p*= − ln r/(2�), where r is the distance from the collocation point (k) to other field points
(i ) given as

r=�(xk−xi)2+ (yk−yi)2 (26)
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Now applying Green’s second identity theorem to Equation (25) and using the standard
boundary element procedure [18], we can get the boundary integral equation as

Cipi+
�

�
pq* d�+

�
�

bp* d�=
�

�
qp* d� (27)

where Ci is the Green’s constant which can be calculated by surrounding the boundary point
i by a small circle of radius � and taking each term in Equation (27) in the limit as ��0.
Generally, Ci can be represented as �/(2�) where � is the internal angle at point i in radians.

In Equation (27), we have boundary integrals and domain integrals. In the present model,
the domain integration is carried out by subdividing the domain into a series of internal cells,
on each of which a numerical integration is performed. Here, linear elements are used for the
boundary discretization and two-dimensional isoparametric quadrilateral cells are used for the
internal discretization. The details of the element properties, shape functions, coordinate
transformation and numerical integration used here are described in Brebbia et al. [18] which
is not repeated here.

If the domain is discretized into M internal cells, then the domain integral can be written as

Di=
�

�
bp* d�= �

M

e=1

� �
NI

k=1

wk(bp*)k
n
�e (28)

where the integral has been approximated by a summation over different cells (e varies from
1 to M), wk are the Gauss integration weights, the function (bp*)k needs to be evaluated at
integration points k on each cell (k varies from 1 to NI, where NI is the total number of
integration points on each cell) and �e is the area of cell e. The term Di is the result of the
numerical integration and is different for each position i of the boundary nodes.

Assuming that the boundary of the domain is discretized into NE linear elements with N
nodes, Equation (27) can be discretized and written in matrix form as

Cipi+ �
N

j=1

H� ijpj+Di= �
N

j=1

Gijqj (29)

Combining the effect of the constant term C with the H� matrix, we can write the matrix system
as

Hp+D=Gq (30)

In Equation (30), the boundary conditions are introduced and the known values are taken
to the right-hand side to form a system of linear equations of the form

Ab=F (31)
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where b is a vector of unknown boundary values of p and q, and F is a known vector.
Equation (31) is solved using Gauss elimination scheme and all the boundary values will be
then known. Once this is done, it is possible to calculate internal values of p or its derivatives.
The values of p are calculated at any internal point using the Equation (27) that can be written
in condensed form as

pi=
�

�
qp* d�−

�
�

pq* d�−
�

�
bp* d� (32)

The same discretization is used for the boundary integrals, that is

pi= �
N

j=1

Gijqj− �
N

j=1

H� ijpj−Di (33)

where i is an internal point.
The main advantage of using BEM in the solution of the pressure Poisson equation is the

effectiveness of BEM to deal with infinite domain problems. Here, only the boundary
conditions of pressure on the finite computational domain are known which is used to solve
the infinite domain problem.

4. COMPUTATIONAL PROCEDURE

As mentioned earlier, here an iterative scheme is used in the solution of the Navier–Stokes
equations. In most of the incompressible viscous flow problems solved using Navier–Stokes
equations, the most natural boundary conditions arise when the velocity is prescribed all over
the boundaries of the problem. As shown in Figure 1, the boundary condition of the fixed
body in the flow is set as non-slip boundary. The computational procedure adopted here
includes the following iterative steps:

For the time step n=1,

1. Assume at infinite domain, pressure p=0 and solve the pressure Laplace equation
(Equation (9)) outside the computational domain and the pressure Poisson equation
(Equation (17)) inside the computational domain together and get the pressure boundary
conditions on the boundaries of the computational domain.

2. Solution of the Navier–Stokes equations using three-step FEM and projection method.
� Solve for the unknown apparent velocity values (Equation (16)).
� Calculate the pressure distribution for the current time step from the pressure Poisson

equation (17) using BEM.
� Determine the new velocity values by solving Equation (18).

3. Check for convergence of the velocity and pressure components in the present iteration, for
example

�pn
k+1−pn

k�
�pn

k� �0.0001 and
�un

k+1−un
k�

�un
k� �0.0001
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If convergence criterion is satisfied, then proceed to the next step, otherwise go to step 1.
4. In the successive time step, use the velocity and pressure components from the previous

time step as initial conditions and the new boundary flow conditions and use the iterative
procedure, steps 1–3. The procedure is repeated until the prescribed time step is reached.

The coefficient of drag and the coefficient of lift on the solid body are found from the
following equations

Cd=
Fd

1
2

�uo
2D

, Cl=
Fl

1
2

�uo
2D

(34)

Fd=
�

s

psny ds−
�

s

�snx ds (35)

Fl=
�

s

psnx ds+
�

s

�sny ds (36)

where uo is the fluid velocity, Fd is the drag force, � is the mass density, D is the characteristic
dimension, Fl is the lift force, �s is the shear force acting on the body, ps is the pressure acting
on the body, and nx and ny are the direction cosines in the x- and y-coordinates respectively.

5. MODEL APPLICATIONS

The proposed three-step FEM–BEM model has been applied on two test problems to
verify the accuracy and feasibility of the model. The present model has been used to
simulate the high-Reynolds number flow past a cylinder, and also in the case of suppres-
sion of fluid forces on two circular cylinders in which one acts as a control cylinder, in the
range of Reynolds number 65000 to 107.

5.1. High-Reynolds number flow past a single circular cylinder

Even though a large number of experimental and numerical studies have been reported on
the flow across a fixed circular cylinder in the laminar flow regime [1,5,8,15,19], only a few
studies have been reported on the high-Reynolds number flow across a circular cylinder
[2,3,13,14]. Here, the present three-step FEM–BEM model has been applied for the simula-
tion of high-Reynolds number flow past a fixed circular cylinder and the results are com-
pared with the available experimental and numerical results. The present model was tested
by simulating flow past a circular cylinder at a large range of Reynolds numbers of
Re=65000, 106 and 107. Figure 1 shows the computational domain with boundary condi-
tions (in this case, no control cylinder). It is 20 units long (cylinder diameter is unity) and
14 units wide approximately.
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Four different meshes are used in the analysis depending on the Reynolds number. The
meshes used are: mesh A, with 5568 elements and 5750 nodes; mesh B, with 4056 elements and
4186 nodes; mesh C, with 5784 elements and 5914 nodes (size of element near to the cylinder
is 0.00875); mesh D, with 5784 elements and 5914 nodes (size of element near to the cylinder
is 0.00027). A zoomed view of the typical mesh near to the cylinder (mesh D) is shown in
Figure 2. The domain of computation was wide enough to encompass the range of the vortex
shedding and fluid forces. The boundary conditions were chosen as u=1, �=0 at the inlet and
a non-slip boundary u=0, �=0 on the cylinder surface. The model was run in unsteady
condition.

Initially, a simulation has been performed at a high Reynolds number of 65000. For this
simulation, mesh B described earlier is used and a time step of 0.02 is used. The velocity,
pressure and vorticity are estimated at time t=200. Figure 3(a) shows the velocity field and
Figure 3(b) shows the pressure field for the Reynolds number 65000 at t=200. The vorticity
distribution around the cylinder is depicted in Figure 3(c). Figure 3(d) shows the streamlines
for the circular cylinder. The time evolution of the coefficients of drag and lift are plotted in
Figures 4 and 5 respectively. Further analysis has been carried out for flow at Re=106 and
107. For the simulation with Re=106, mesh C described earlier is used and a time step of
0.0001 is adopted. For the simulation with Re=107, mesh D described earlier is used and a
time step of 0.00001 is used. Figure 6(a)– (c) shows the pressure field, vorticity distribution and

Figure 2. Zoomed view of the mesh for the computational domain—case 1.
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Figure 3. (a) Velocity field for flow around a circular cylinder, Re=6.5×104, t=200. (b) Pressure field
for flow around a circular cylinder, Re=6.5×104, t=200. (c) Vorticity distribution for flow around a
circular cylinder, Re=6.5×104, t=200. (d) Streamline distribution for flow around a circular cylinder,

Re=6.5×104, t=200.
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Figure 3 (Continued)
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Figure 4. Time behavior of drag coefficient for flow across a circular cylinder, Re=6.5×104.

Figure 5. Time behavior of lift coefficient for flow across a circular cylinder, Re=6.5×104.

streamlines respectively for the Reynolds number 106 at time t=22. Figure 7(a)– (c) shows
the pressure field, vorticity distribution and streamlines respectively for the Reynolds num-
ber 107 at time t=0.4. These figures clearly show the effect of increase in Reynolds number
in the flow regime and the applicability of the present model to simulate flow past a
circular cylinder at very high Reynolds numbers.

Figure 8 shows the variation of the coefficient of drag with respect to Reynolds numbers
for various meshes mentioned earlier. The results are compared with the experimental
results of Cantwell and Coles [2] and numerical results of Kakuda and Tosaka [13], Kondo
[14], Tamura and Kuwahara [20] and Chang [21]. The results from the present model are
generally in fairly good agreement with the other model results. The vortex shedding and
fluid forces analysis in the case of the single circular cylinder is used further in the fluid
force suppression analysis in the next case study by introducing a control cylinder.

For very high-Reynolds number flows past a smooth boundary such as a cylinder, the
flow becomes a very interesting and challenging one, namely, the triple-deck like phenom-
ena, as discussed by Stevertson [22] for flat plates and by Smith et al. [23] for smooth
humps. There are three distinct decks (if we consider a cross section through the center of
the cylinder), the inviscid irrotational upper deck, the inviscid rotational middle deck and
the viscous rotational low deck [22]. Physically, the flow phenomena in the three decks
could be analyzed by solving the potential, Euler and Navier–Stokes equations respectively.
As pointed out by Smith et al. [23], the distinction between these three decks are rather
difficult in reality. However, by using the Navier–Stokes equations solver of the present
study, it is possible to observe the triple-deck like phenomena around a cylinder at very
high Reynolds number. Combining Figures 6 and 7 for Re=106 to 107, especially the
vorticity distributions of Figures 6(b) and 7(b), and streamlines of Figures 6(c) and 7(c), the
middle and lower decks are almost confined to the boundary of the cylinder, leaving the
upper deck behaving like a potential flow.
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Figure 6. (a) Pressure field for flow around a circular cylinder, Re=106, t=22. (b) Vorticity distribution
for flow around a circular cylinder, Re=106, t=22. (c) Streamline distribution for flow around a circular

cylinder, Re=106, t=22.
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Figure 6 (Continued)

5.2. Suppression of flow past a circular cylinder with a control cylinder at high Reynolds
numbers

In this case study, the model is applied to investigate the effect of a control cylinder in the
vicinity of a main circular cylinder in a uniform flow field, which suppresses the fluid forces
by the main circular cylinder. Recently, Sakamoto and Haniu [3] showed experimentally
that the vortex shedding behind a circular cylinder can be suppressed at high Reynolds
numbers using an appropriately placed small control cylinder. In this case study, the vortex
alteration and suppression are investigated numerically using the three-step FEM–BEM
model at a high Reynolds number of 65000.

Here, the same problem described in previous case study (Section 5.1) is used but a small
circular cylinder (of size d/D=0.06, where D is the diameter of the main cylinder and d is
the diameter of the control cylinder) is placed at various positions, and its effects on the
fluid forces on the main cylinder are numerically analyzed. A sample of zoomed discretiza-
tion near the circular cylinders with the main cylinder and control cylinder is shown in
Figure 9. The domain is discretized using 4060 elements and 4193 nodes. Figure 10 shows
the definition of the coordinate system used in the present study. The control cylinder is
placed at a position of G/d=2 (refer to Figure 10) above the middle centerline of the main
cylinder with � angles (0°–180°) and its effect on the fluid flow at an interval of 15° is
investigated. The diameter of the control cylinder and the G/d position are chosen accord-
ing to the values used by Sakamoto and Hainu [3].
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Initially, the effect of the control cylinder placed at 30° is analyzed. The velocity, pressure
and vorticity of the main cylinder in the presence of the control cylinder are estimated at time
t=200 (�t=0.02). Figure 11(a) shows the velocity field and Figure 11(b) depicts the pressure
field at time t=200. The vorticity distribution around the cylinder is depicted in Figure 11(c).
Figure 11(d) shows the streamlines for the circular cylinder. These figures show the salient
features of the effect of the control cylinder in the flow regime of the main circular cylinder in
comparison with the flow field described in the first case (Section 5.1). From these figures, it
can be easily observed that there is a significant change in the vortex shedding and fluid forces
due to the influence of the control cylinder.

To investigate the effects of various positions of the control cylinder on the vortex shedding
for the selected size of the control cylinder and G/d=2, numerical analyses have been carried
out by placing the control cylinder at various positions. Figure 12(a)– (d) shows the velocity
field, pressure distribution, vorticity distribution and streamlines for a 45° position of the
control cylinder at time t=70 (�t=0.005). Figure 13 illustrates the pressure distribution for
a 90° position of the cylinder at time t=100 (�t=0.01). Figure 14(a)– (d) exhibits the velocity
field, pressure distribution, vorticity distribution and stream lines for a 120° position of the
control cylinder at time t=100 (�t=0.01), and Figure 15 shows the pressure distribution for

Figure 7. (a) Pressure field for flow around a circular cylinder, Re=107, t=0.4. (b) Vorticity distribu-
tion for flow around a circular cylinder, Re=107, t=0.4. (c) Streamline distribution for flow around a

circular cylinder, Re=107, t=0.4.
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Figure 7 (Continued)
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Figure 8. Drag coefficient variation with reference to Reynolds number.

a 150° position of the control cylinder at time t=100 (�t=0.01). It is very clear that the
vortex-shedding pattern considerably changes with the variation in the position of the control
cylinder.

The method of quantifying the changes in fluid forces occurring due to the introduction of
the control cylinder in the wake is by monitoring the drag and lift forces on the main cylinder.
Figure 16 shows the ratio of coefficient of drag (Cdc) due to the control cylinder to the drag
coefficient (Cdn) without the control cylinder for various positions of the control cylinder.
Figure 17 shows the ratio of the root mean square (r.m.s.) value of the coefficient of lift (Clfc)
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Figure 9. Zoomed view of the mesh for the computational domain—case 2.

Figure 10. Definition sketch and coordinate position of the main and control cylinders.
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Figure 11. (a) Velocity field for flow around a circular cylinder with control cylinder, Re=6.5×104,
t=200, �=30°. (b) Pressure field for flow around a circular cylinder with control cylinder, Re=6.5×
104, t=200, �=30°. (c) Vorticity distribution for flow around a circular cylinder with control cylinder,
Re=6.5×104, t=200, �=30°. (d) Streamline distribution for flow around a circular cylinder with

control cylinder, Re=6.5×104, t=200, �=30°.
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Figure 11 (Continued)
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Figure 12. (a) Velocity field for flow around a circular cylinder with control cylinder, Re=6.5×104,
t=70, �=45°. (b) Pressure field for flow around a circular cylinder with control cylinder, Re=6.5×104,
t=70, �=45°. (c) Vorticity distribution for flow around a circular cylinder with control cylinder,
Re=6.5×104, t=70, �=45°. (d) Streamline distribution for flow around a circular cylinder with

control cylinder, Re=6.5×104, t=70, �=45°.
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Figure 12 (Continued)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 657–689



FLOW AROUND CIRCULAR CYLINDERS 681

Figure 13. Pressure field for flow around a circular cylinder with control cylinder, Re=6.5×104,
t=100, �=90°.

due to the control cylinder to the lift coefficient (Clfn) without the control cylinder for the
various positions of the control cylinder. The results are compared with the experimental
results of Sakamoto and Haniu [3] as well as Chang [19]. The experimental investigation of
Sakamoto and Haniu [3] reported that the critical position for the control cylinder to suppress
the fluid forces is near 60° and near 120°. However, the numerical simulations of the present
study indicate a slightly different value of near 50° and near 120°. This difference may be
attributed to the differences of the level of disturbance, specific end conditions and three-
dimensional effects.

Figures 18 and 19 show respectively the coefficients of drag and lift calculated with reference
to the various positions of the control cylinder. Figure 20 displays the corresponding power
spectrum of the fluctuating drag coefficient for various positions of the control cylinder. These
figures clearly depict the effect of the control cylinder in the flow regime in comparison to the
case without the control cylinder. The coefficients of drag and lift drastically change with the
position of the control cylinder. As is obvious, large reductions in the time-averaged drag is
due to the displacement of the separation points, which are very conspicuous in the cases of
�=45° and 120°.
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Figure 14. (a) Velocity field for flow around a circular cylinder with control cylinder, Re=6.5×104,
t=100, �=120°. (b) Pressure field for flow around a circular cylinder with control cylinder, Re=6.5×
104, t=100, �=120°. (c) Vorticity distribution for flow around a circular cylinder with control cylinder,
Re=6.5×104, t=100, �=120°. (d) Streamline distribution for flow around a circular cylinder with

control cylinder, Re=6.5×104, t=100, �=120°.
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Figure 14 (Continued)
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Figure 15. Pressure field for flow around a circular cylinder with control cylinder, Re=6.5×104,
t=100, �=150°.

Figure 16. Comparison of the ratio of drag coefficient of cylinder with and without control cylinder for
various � angles.
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Figure 17. Comparison of the ratio of r.m.s. value of lift coefficient of cylinder with and without control
cylinder for various � angles.

Figure 18. Drag coefficient of cylinder with and without control cylinder for various � angles.
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Figure 19. Lift coefficient of cylinder with and without control cylinder for various � angles.

This numerical study further explains the study of Sakamato and Haniu [3] on the effects
of a small control cylinder, in the wake of a main circular cylinder at a high Reynolds
number. The pressure fields and vorticity distributions plotted reveal that the presence of
the smaller cylinder reduces the growth rate of the disturbances and its suppression accom-
panied by the disappearance of the sharp spectral peaks, coincides with negative temporal
growth rates. The presence of the control cylinder alters the stability of the flow and diverts
small amounts of fluid into the wake of the main cylinder. The position and size of the
control cylinder are very important factors in the vortex shedding and suppression, for the
given Reynolds number of the flow regime [3], even though in the present analysis the
effect of the size of the control cylinder is not considered.

The reasons for the suppression of fluid forces by the proper placement of a small
control cylinder in the near wake of the main cylinder, are attributed to the redistribution
of the vorticity in the shear layer, the fluid diversion between main and control cylinders to
reduce the velocity gradients, as well as the pressure change between the two cylinders, as
pointed out by Sakamoto and Haniu [3]. Figures 3(c), 12(c) (at 45°) and 14(c) (at 120°)
respectively show the vorticity distributions without the control cylinder and with the
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Figure 20. Power spectrum of fluctuating drag coefficient of cylinder with and without control cylinder
for various � angles.

control cylinder at Re=65000. The concentrated vorticity in the shear layer behind the
main cylinder is smeared and diffused by the proper placement of the control cylinder. The
suppression of vortex shedding as a consequence will reduce the magnitudes of the drag
and lift forces as well as the oscillating frequencies. The pressure distributions without the
control cylinder and with the control cylinder are shown for comparison in Figures 3(b),
12(b) (at 45°) and 14(b) (at 120°) respectively. The drastic reduction of pressure in the wake
of the main cylinder by the introduction of the control cylinder suggests the mechanism for
the suppression of vortex shedding and fluid forces.

6. CONCLUDING REMARKS

In this paper a novel computational model is presented to solve high-Reynolds number
incompressible viscous flow problems. In the model, the transient Navier–Stokes equations
in primitive variables are solved by a three-step FEM using a projection method, and the
Poisson type pressure equations are solved using BEM. By coupling the three-step FEM
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and BEM, the model is able to handle infinite domain problems efficiently. The infinite
boundary value problems are solved by extracting the boundary effects on a specified finite
computational domain using the projection method.

The present model is applied to simulate high-Reynolds number flow past a single circu-
lar cylinder, and flow past two cylinders in which one acts as a control cylinder. The
simulation results are compared with some experimental data and other numerical models
and found to be feasible and satisfactory. Even though two-dimensional problems are
presented here, the model can be easily extended to three-dimensional problems and also
turbulence models can be incorporated.
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